Tyrosine phosphorylation within the SH3 domain regulates CAS subcellular localization, cell migration, and invasiveness
نویسندگان
چکیده
Crk-associated substrate (CAS) is a major tyrosine-phosphorylated protein in cells transformed by v-crk and v-src oncogenes and plays an important role in invasiveness of Src-transformed cells. A novel phosphorylation site on CAS, Tyr-12 (Y12) within the ligand-binding hydrophobic pocket of the CAS SH3 domain, was identified and found to be enriched in Src-transformed cells and invasive human carcinoma cells. To study the biological significance of CAS Y12 phosphorylation, phosphomimicking Y12E and nonphosphorylatable Y12F mutants of CAS were studied. The phosphomimicking mutation decreased interaction of the CAS SH3 domain with focal adhesion kinase (FAK) and PTP-PEST and reduced tyrosine phosphorylation of FAK. Live-cell imaging showed that green fluorescent protein-tagged CAS Y12E mutant is, in contrast to wild-type or Y12F CAS, excluded from focal adhesions but retains its localization to podosome-type adhesions. Expression of CAS-Y12F in cas-/- mouse embryonic fibroblasts resulted in hyperphosphorylation of the CAS substrate domain, and this was associated with slower turnover of focal adhesions and decreased cell migration. Moreover, expression of CAS Y12F in Src-transformed cells greatly decreased invasiveness when compared to wild-type CAS expression. These findings reveal an important role of CAS Y12 phosphorylation in the regulation of focal adhesion assembly, cell migration, and invasiveness of Src-transformed cells.
منابع مشابه
Dynamics and mechanism of p130Cas localization to focal adhesions.
The docking protein p130Cas is a major Src substrate involved in integrin signaling and mechanotransduction. Tyrosine phosphorylation of p130Cas in focal adhesions (FAs) has been linked to enhanced cell migration, invasion, proliferation, and survival. However, the mechanism of p130Cas targeting to FAs is uncertain, and dynamic aspects of its localization have not been explored. Using live cell...
متن کاملSrc regulates phorbol 12-myristate 13-acetate-activated PKC-induced migration via Cas/Crk/Rac1 signaling pathway in glioblastoma cells.
In this study, we demonstrate that phorbol 12-myristate 13-acetate (PMA)-activated protein kinase C (PKC) induced migration in A172 glioblastoma cells via Src. PMA treatment induced tyrosine phosphorylation of Crk-associated substrate (Cas) and formation of a complex with Crk, followed by Rac1 activation, a downstream effector of Cas/Crk complex. These effects were blocked by a tyrosine kinase ...
متن کاملP130Cas Src-Binding and Substrate Domains Have Distinct Roles in Sustaining Focal Adhesion Disassembly and Promoting Cell Migration
The docking protein p130Cas is a prominent Src substrate found in focal adhesions (FAs) and is implicated in regulating critical aspects of cell motility including FA disassembly and protrusion of the leading edge plasma membrane. To better understand how p130Cas acts to promote these events we examined requirements for established p130Cas signaling motifs including the SH3-binding site of the ...
متن کاملAck1 mediates Cdc42-dependent cell migration and signaling to p130Cas.
We previously showed that activation of the small GTPase Cdc42 promotes breast cell migration on a collagen matrix. Here we further define the signaling pathways that drive this response and show that Cdc42-mediated migration relies on the adaptor molecule p130(Cas). Activated Cdc42 enhanced p130(Cas) phosphorylation and its binding to Crk. Cdc42-driven migration and p130(Cas) phosphorylation w...
متن کاملCrk-associated substrate tyrosine phosphorylation sites are critical for invasion and metastasis of SRC-transformed cells.
Crk-associated substrate (CAS, p130Cas) is a major tyrosine phosphorylated protein in cells transformed by v-crk and v-src oncogenes. We recently reported that reexpression of CAS in CAS-deficient mouse embryo fibroblasts transformed by oncogenic Src promoted an invasive phenotype associated with enhanced cell migration through Matrigel, organization of actin into large podosome ring and belt s...
متن کامل